Considerations for Tdap Revaccination

Thomas Clark, MD, MPH For the

ACIP Pertussis Vaccines Work Group

Advisory Committee on Immunization Practices February 20, 2013

National Center for Immunization & Respiratory Diseases

Division of Bacterial Diseases

WG Review and Considerations: Tdap revaccination of the general population

- Current Tdap policy and objectives
- Epidemiology of pertussis and status of vaccination program
- Summary of Tdap vaccine performance
 - Antibody persistence
 - Effectiveness/duration of protection
 - Revaccination
 - Safety
 - Immunogenicity
- Revaccination options
 - Framework for decision and cost-effectiveness analysis
- Programmatic feasibility and acceptability

Current ACIP Recommendations for Tdap

A single Tdap dose

- Adolescents aged 11 through 18 years, preferred 11 or 12 years
- Adults aged 19 years and older
- Further guidance will be forthcoming on timing of revaccination in persons who have received Tdap previously
- Pregnant women are recommended Tdap with every pregnancy
- Decennial Td booster for those who have received 1 Tdap
 - 5 years for wound management

Adacel licensed for ages 11 through 64 years, Boostrix licensed for ages 11 years and older

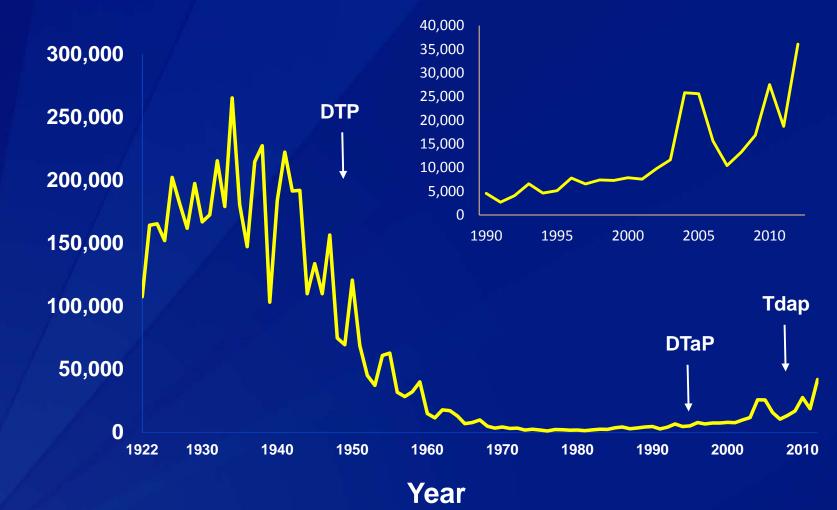
Objectives of Pertussis Vaccination Policy

Primary

To protect vaccinated persons against pertussis

Secondary

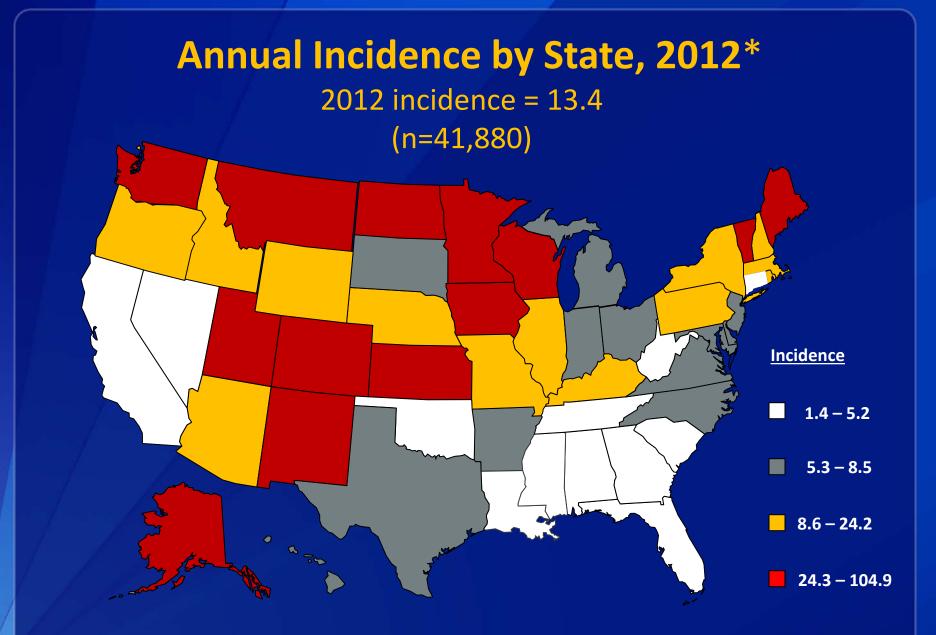
 To reduce the reservoir of pertussis in the population at large, and thereby potentially:


1) decrease exposure of persons at increased risk for complicated infection (e.g., infants), and

2) reduce the cost and disruption of pertussis in health-care facilities and other institutional settings

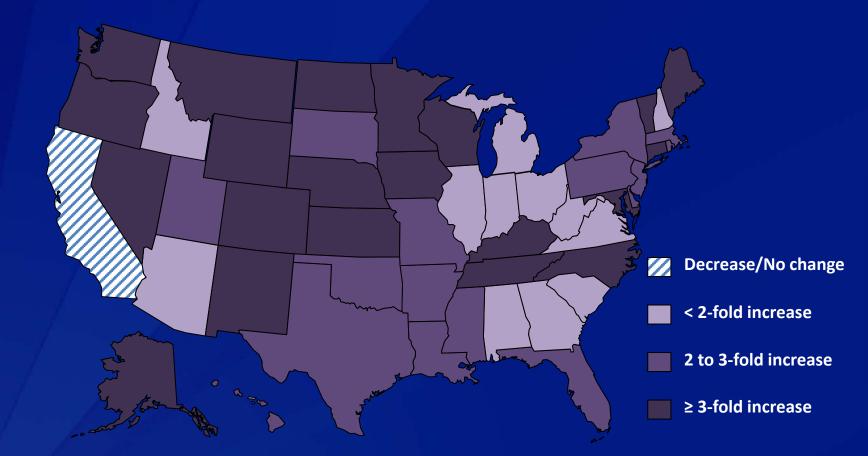
CDC. Preventing tetanus, diphtheria, and pertussis among adults: use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine. Recommendations of the Advisory Committee on Immunization Practices (ACIP) and recommendation of ACIP, supported by the Healthcare Infection Control Practices Advisory Committee (HICPAC), for use of Tdap among health-care personnel. MMWR 2006;55(No. RR-17).

PERTUSSIS EPIDEMIOLOGY AND VACCINATION


Reported NNDSS pertussis cases: 1922-2012*

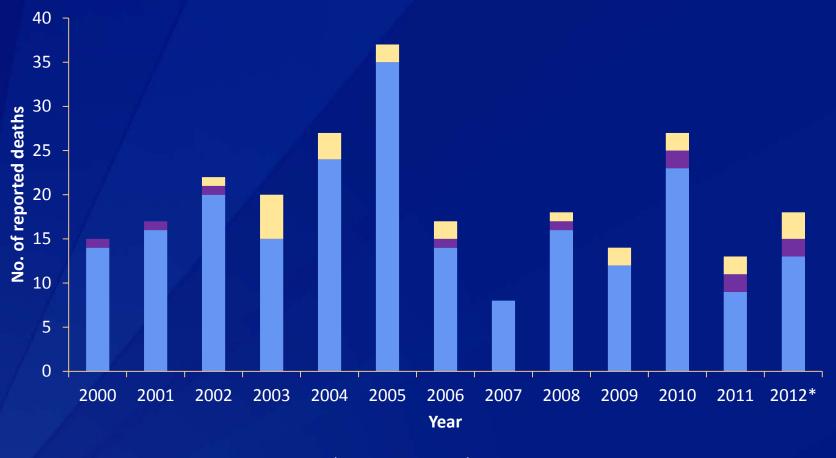
*2011 data are provisional; 2012 data are provisional.

SOURCE: CDC, National Notifiable Diseases Surveillance System and Supplemental Pertussis Surveillance System and 1922-1949, passive reports to the Public Health Service


Number of cases

*2012 data are provisional.

Source : CDC National Notifiable Disease Surveillance System, 2012 2011 Census data used for population estimates; Incidence is per 100,000 population


Changes in Pertussis Reporting by State from 2011 to 2012* +

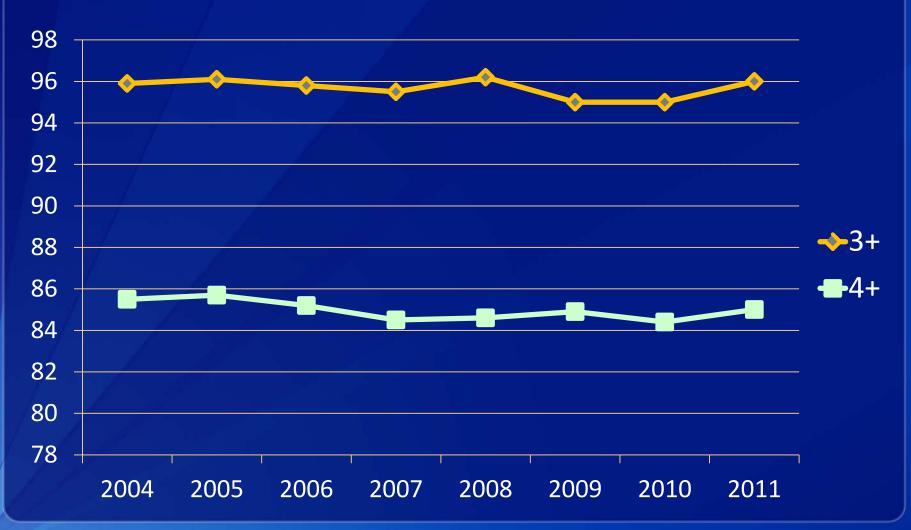
*Data for 2012 are provisional. *Cases reported through Week 52 in 2011 were compared with cases reported through Week 52 in 2012; fold-changes were calculated for each state.

Pertussis deaths by age group, 2000-2012*

Solution

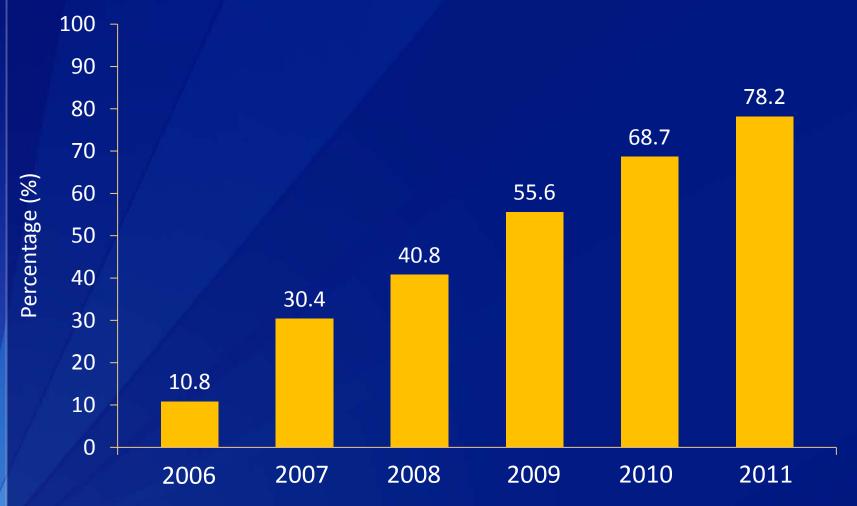
*2012 data are provisional.

Source: CDC. National Notifiable Diseases Surveillance System, 2012.

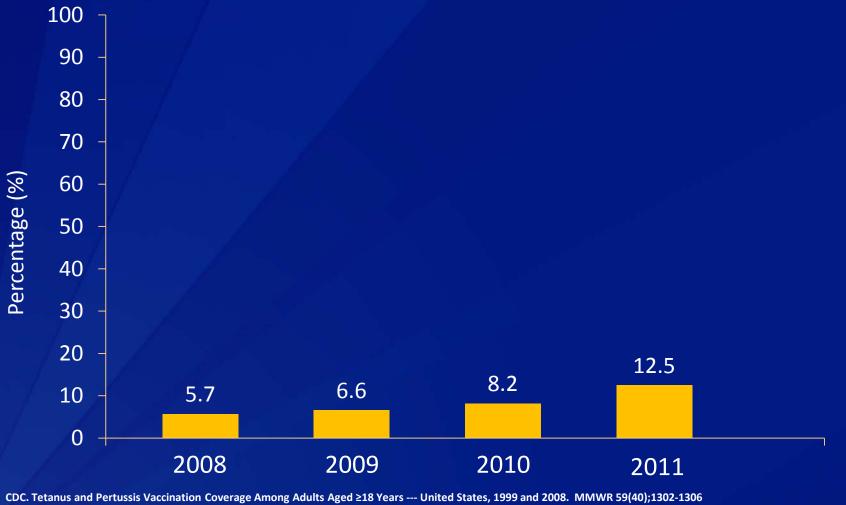

Pertussis Immunization in the US

- Whole-cell vaccines/DTwP (1940s)
- DTaP (1990s)
 - Infants at 2, 4, 6 months (1997)
 - Toddlers at 15-18 months (1992)
 - Pre-school at 4-6 years (1992)

• Tdap


- Adolescents at 11-12 years (2005)
- Adults who have not received (2005)

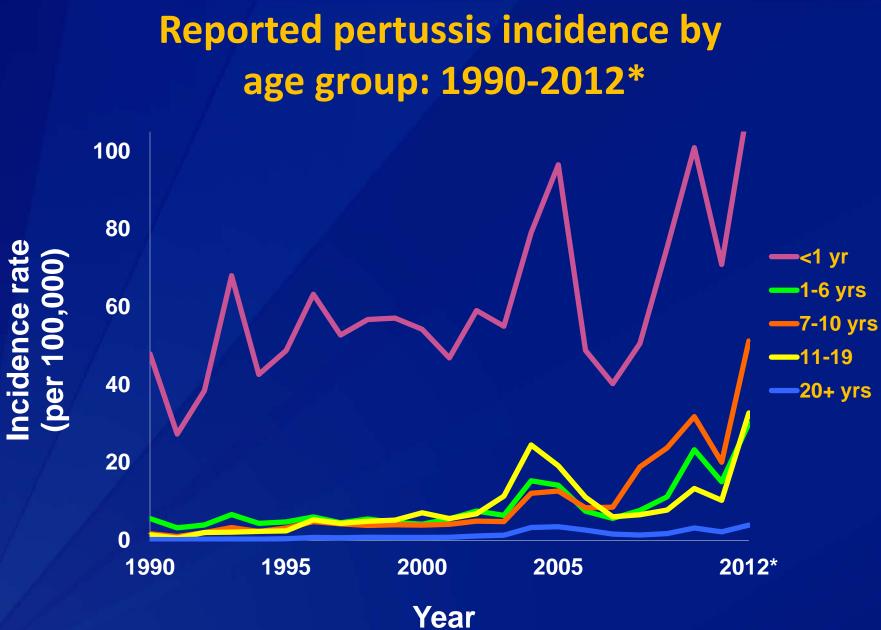
High DTaP coverage among children aged 19 through 35 months — 2004–2011


CDC National Immunization Survey

Increasing Tdap coverage among adolescents aged 13–17 years — 2006–2011

CDC. National, State, and Local Area Vaccination Coverage Among Adolescents Aged 33-17 Years - United States, 2008. MMWR 2008;58(36);997-1001. CDC. Vaccination Coverage Among Adolescents Aged 13-17 Years - United States, 2007. MMWR 2008;57(40)1100-1103. CDC. Vaccination Coverage Among Adolescents Aged 13-17 Years - United States, 2006. MMWR 2007;56(34) 885-888. CDC. National, State, and Local Area Vaccination Coverage among Adolescents Aged 13-17 Years - United States, 2009 MMWR 2010;59(32);1018-1023.

Tdap coverage among adults aged 19–64 years, 2008 – 2011, NHIS


CDC. Adult Vaccination Coverage — United States, 2010. MMWR 61(04);66-72

CDC. Noninfluenza Vaccination Coverage Among Adults — United States, 2011. MMWR 62(04);66-72

Self-reported tetanus vaccination coverage among persons aged ≥19 years, 2009, NHIS

		Tetanus vaccination within preceding 10 yrs (2009)					
		No. in	Vaccinati	on coverage			
		sample+§	%	95% CI			
	Total	26,050	61.3	60.4-62.2			
Age	Age group (yrs)						
	1924	2,353	66.4	63.8-69.0			
	2549	12,025	62.3	61.0-63.5			
	5064	6,540	62.8	61.3-64.3			
	6574	2,765	58.3	56.0-60.6			
	75+	2,367	46.0	43.5-48.5			

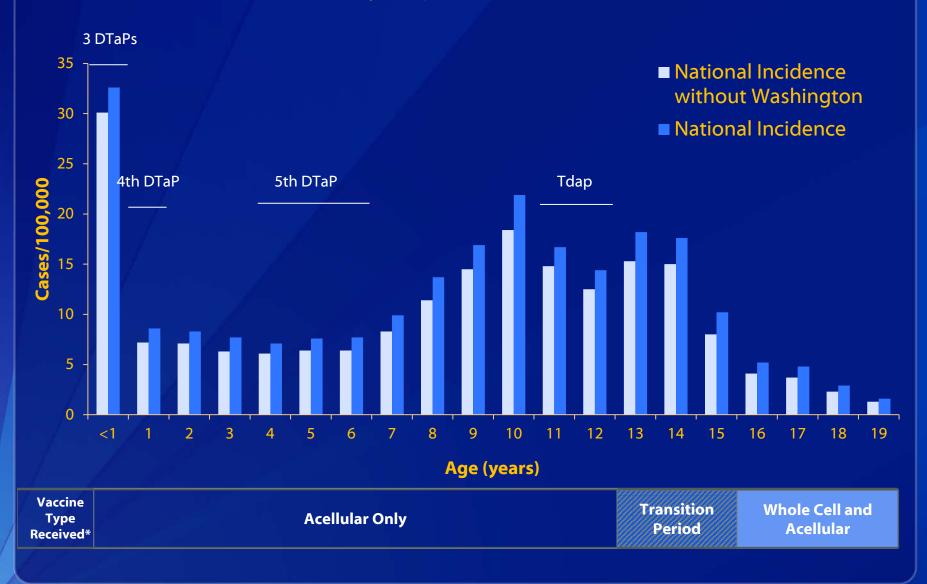
CDC. 2009 Adult Vaccination Coverage, NHIS. http://www.cdc.gov/vaccines/stats-surv/nhis/2009-nhis.htm

*2012 data are provisional.

SOURCE: CDC, National Notifiable Diseases Surveillance System and Supplemental Pertussis Surveillance System

Absence of Indirect Effects of Tdap Mean incidence of reported pertussis among infants

	<u>1990-2003</u> (pre-peak)	<u>2006-2012</u> (post-peak)	p-value
Mean incidence (per 100,000)	52.1	73.3	0.10


DTaP VE and Duration of Protection Estimates— California, 2010¹

Model *	Case (n)	Control (n)	VE, %	95% CI
Overall VE, All Ages				
0 dose	53	19	Ref	
5 doses	629	1,997	88.7	79.4 – 93.8
Time since 5 th dose				
0 doses	53	19	Ref	
< 12 months	19	354	98.1	96.1 – 99.1
12 – 23 months	51	391	95.3	91.2 – 97.5
24 – 35 months	79	366	92.3	86.6 – 95.5
36 – 47 months	108	304	87.3	76.2 – 93.2
48 – 59 months	141	294	82.8	68.7 – 90.6
60+ months	231	288	71.2	45.8 - 84.8

¹JAMA. 2012;308:2126-2132.

*Accounting for clustering by county and provider

Pertussis rates by age — United States, 2012

CDC. MMWR 2012;61(28);517-522.

Summary and Working Hypothesis

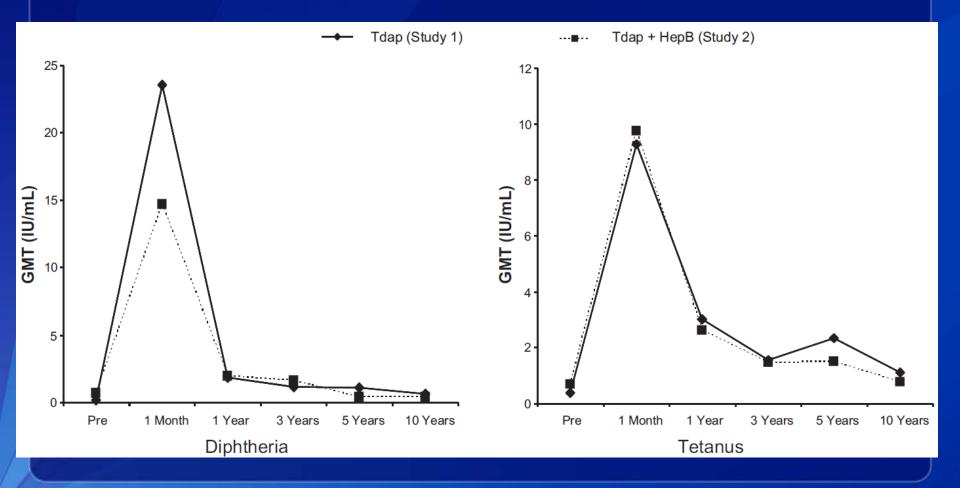
Pertussis incidence has increased since 1980s

Resurgence of childhood disease despite high DTaP coverage

- Excellent initial vaccine effectiveness
- Moderate and immediate waning of immunity
- Re-emergence of adolescent disease despite Tdap
 - Tdap boost in DTaP recipients may wane quickly
- Switch to aP vaccines is changing pertussis epidemiology
 - i.e. a problem of susceptibility *despite* vaccination

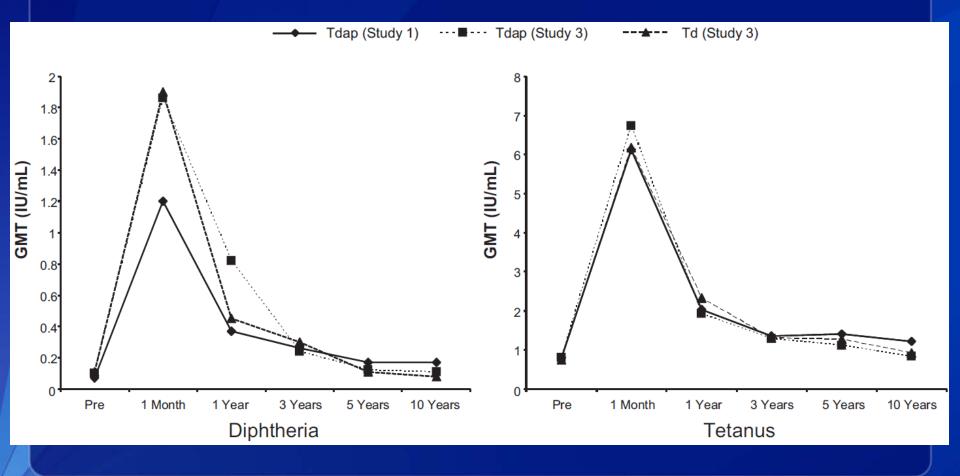
Tdap ANTIBODY PERSISTENCE

Tdap antibody persistence Published studies


	/		<u>Subjects (n)</u>		<u>Mean age (yrs) (range)</u>	
Country	Vaccine	Post-Tdap (yrs)	Tdap	Control*	Tdap	Control*
U.S.	Boostrix	3	937	449	44.8 (21-67)	45.3 (22-67)
Canada	Adacel	1 3	۹	¶	¶	۹
		5 10				
Finland	Boostrix	3	264	30	14.6 (14.0-15.9)	same as Tdap
		5	267	36	16.6 (15.8 – 17.9)	
		10	75	7	21.1 ± 0.31	
Australia	Boostrix	1-3	310	77	39.8 (20-69)	41.2 (22-57)
		5	240	64	45.2 (25-74)	47.0 (28-62)
1-1		10	153	35	50.3 ± 9.74	same as Tdap

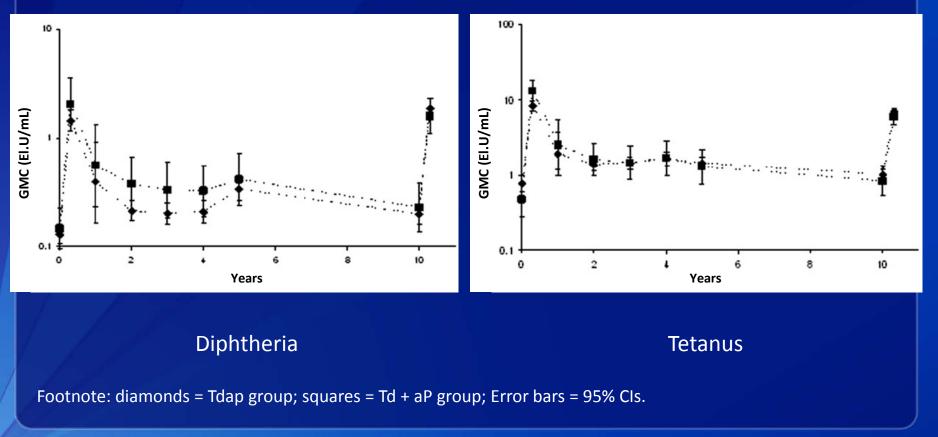
* Control vaccines: US – Adacel; Finland and Australia – Td + aP

[¶] Summary of 3 studies: Study 1 - 11 – 54 yrs (3 lots of Tdap); Study 2 –11-13 yrs (Tdap + Hep B); Study 3 – 19-60 yrs (Td vs. Tdap)


US: Weston et al (2011); Canada: Barreto et al (2007), Tomovici et al (2012); Finland: Edelman et al (2004), Edelman et al (2007), Mertsola et al (2010); Australia: McIntyre et al (2004), McIntyre et al (2009), Booy et al (2010)

Diphtheria and tetanus antitoxin GMC up to 10 years after Tdap (Adacel) Adolescents (n=324)

Tomovici 2012


Diphtheria and tetanus antitoxin GMC up to 10 years after Tdap (Adacel) Adults (n=644)

Tomovici 2012

Diphtheria and Tetanus: Antibody GMCs over 10 years before and after 1st Tdap and 1month after repeat Tdap booster (Boostrix)

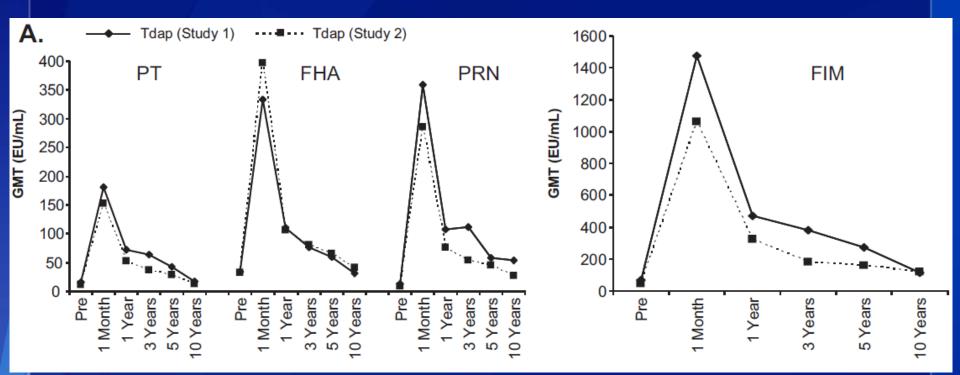
Adults (n=164)

Booy 2010

Summary: Persistence of antibodies post-Tdap Tetanus and Diphtheria

Diphtheria

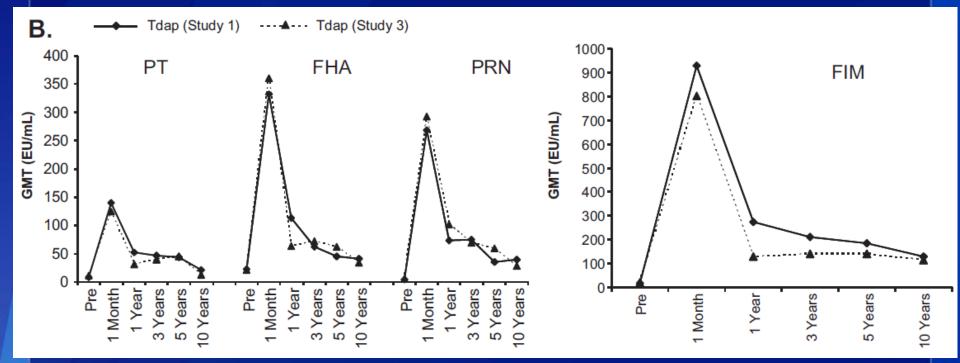
- High levels of seroprotection* (>90%) at 3-5 years
- >80% seroprotection at 10 years
- Generally, adolescents > adults
- Comparable to Td


Tetanus

- Very high levels of seroprotection persisting to 10 years
- Comparable to Td

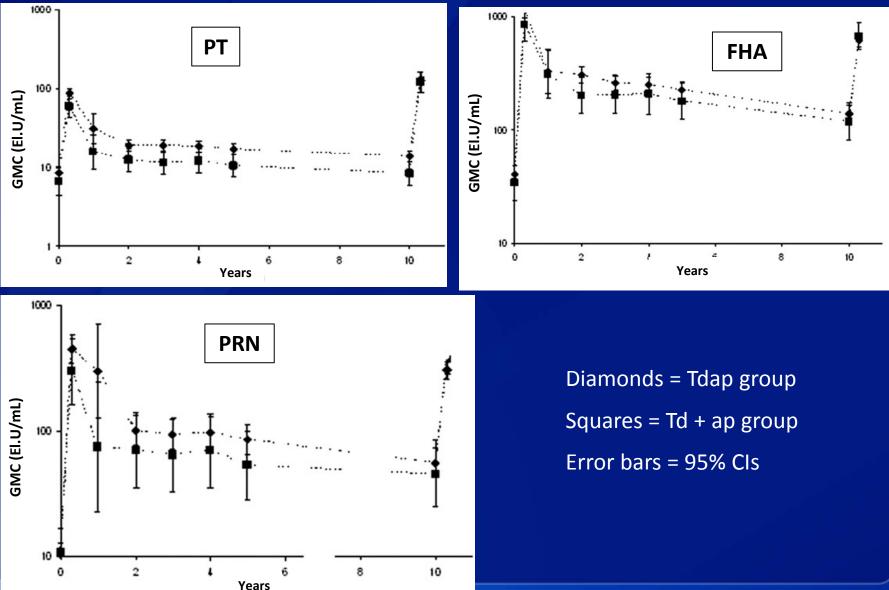
*Seroprotection for diphtheria and tetanus defined as ≥0.1 IU/mL by ELISA and/or Vero cell assay (0.016 IU/mL)

Pertussis antigens GMC up to 10 years after Tdap (Adacel)


Adolescents (n=324)

PT: pertussis toxin; FHA: filamentous hemagglutinin; PRN: pertactin; FIM: fimbriae types 2&3

Tomovici 2012


Pertussis antigens GMC up to 10 years after Tdap (Adacel) Adults (n=644)

PT: pertussis toxin; FHA: filamentous hemagglutinin; PRN: pertactin; FIM: fimbriae types 2&3

Tomovici 2012

Pertussis: Antibody GMCs over 10 years before and after 1st Tdap and one month after decennial Tdap (Boostrix) Adults (n=164)

Booy 2010

Persistence of antibodies post-Tdap Pertussis

Post-vaccination:

- Rapid decline in first 1-2 years
- Slower decline over 5-10 years
- Antibody levels generally higher than pre-vaccination, but close to prevaccination at 10 years

Antibody contributes to protection, but no defined level(s) of antibody correlates absolutely with protection

Persistence of antibodies post-Tdap WG conclusions

Reassured that protection against tetanus and diphtheria would persist for 5 to 10 years

Concern regarding decay of pertussis antibody by 5 years

Difficulty in reconciling antibody response and persistence with vaccine effectiveness data

TDAP VACCINE EFFECTIVENESS

Tdap Vaccine Effectiveness Studies

Author	Year	Country	Age Range	Study Design	VE (Confidence Interval)
Pichichero	2005	US	11-64	Immunogenicity	85-89*
Ward	2005	US	15-65	Randomized Clinical Trial	92 (32-99)
Rank	2009	Australia	12-19	Screening	78 (61-88)
Wei	2010	St. Croix	11-18	Cohort	66 (-36-91)
CDC	2011	US	11-17	Case-Control	72 (38-87)
CDC	2012	US	11-19	Cohort	69 (38-86)
CDC	2012	US	11-14	Case-control	66 (52-76)

*Gustafsson et al. NEJM 1996; 334: 349-55. *Schmitt et al. JAMA 1996; 275: 37-41. Pichichero et al. JAMA 2005; 293: 3003-11. Ward JI et al. N Engl J Med. 2005 Oct 13;353(15):1555-63. CDC unpublished data. Rank C, et al. Pediatr Infect Dis J. 2009 Feb;28(2):152-3. Wei SC, et al. CID 2010; 51(3):315-321. Skoff et al. NIC 2011, Washington, DC. Terranella et al. EIS Conference 2012, Atlanta.

Adult Pertussis Trial (APERT) United States

Vaccine: 3-component acellular pertussis*

Design: randomized controlled trial

- July 1997-December 1999
- 2781 subjects (aged 15-65 years)
 - No history on primary series, but would have received DTwP

□ VE=92% (95% CI: 32-99)

One vaccinated, 9 unvaccinated cases

* 8 µg pertussis toxin, 8 µg filamentous hemagglutinin, 2.5 µg pertactin without diphtheria or tetanus toxoids

Field evaluation of Tdap New South Wales, Australia

Mass Tdap vaccination program

- 3-component Tdap
- May December 2004

Design: screening method

- 272,000 high school students (aged 12-19 years)
 - No history on primary series, but would have received DTwP
- Coverage data from school records
- Notified pertussis cases with onset January 1 -December 31, 2005

VE = 78.0% (95%CI: 60.7-87.6)

167 cases (26% vaccinated), PPV 56%

Field evaluation of Tdap St. Croix, US Virgin Islands

Pertussis school outbreak

- Nursery 12th grade
- September December 2007

Design: cohort study

- 266 students aged ≥11 years
 - 98% had received \geq 4 childhood doses, would have received some DTwP
 - 12% had received Tdap

□ VE = 65.6% (95% CI: -35.8-91.3)

2 cases among 33 vaccinated, 41 cases among 233 unvaccinated

Summary of Tdap Effectiveness

- Tdap effectiveness 66 78% in field observational studies
- Preliminary data suggest effectiveness wanes within 3-4 years among acellular recipients
- Vaccine effectiveness data consistent with current epidemiology
- No evidence of herd immunity

Tdap REVACCINATION

Tdap revaccination - Published clinical trials

5 years after previous Tdap

Country	Product	Previously received (n)	Ν	Mean age (yrs)	Author
Germany	Boostrix (Tdap-IPV)	Tdap-IPV Tdap + IPV	415	11.4 ± 0.94* (range: 9 to 13)	Knuf <i>et al</i> (2010)
Canada & US	Adacel	Tdap	545	31.7 (range: 15 to 69)	Halperin <i>et al</i> (2011)

* Received first Tdap at age 4-8 years (replaced 5th DTaP dose)

10 years after previous Tdap

Country	Product	Previously received (n)	Ν	Mean age (yrs)	Author
Finland	Boostrix	Tdap (75) DT + ap (7)	82	21.1 ± 0.31	Mertsola <i>et al</i> (2010)
Australia	Boostrix	Tdap (153) DT + ap (35)	164	50.3 ± 9.74	Booy <i>et al</i> (2010)
Canada	Adacel	Tdap Tdap-IPV	342	31.2 (range: 21 to 70)	Halperin <i>et al</i> (2012)

Tdap revaccination U.S. clinical trials

GSK study of Boostrix in young adults administered 10 years after previous Tdap boosting

Study starts in 1Q 2013 and report in 2014

Sanofi Pasteur – Adacel in adults administered 9-11 years after previous Tdap

Study completed and presented to WG (2013)

Tdap revaccination 5- and 10-years after first Tdap

SAFETY

Summary of adverse events: 2nd Tdap 5 years after previous dose

	/	Injection site (%)			<u>Systemic (%)</u>				
	Pain	Erythema	Swelling	Myalgia	Headache	Malaise	Fever	Serious AEs	
Adacel - 1 to 14 days post-vaccination (Halperin 2011)									
1 st Tdap (n=532)	73.8	19.2	16.2	27.7	39.7	n/a	4.4		
2 nd Tdap (n=539)	87.6	28.6	25.6	61.0	53.2	38.2	6.5	7*	
Boostrix-IPV - 1 to 4 days post-vaccination (Knuf 2010)									
1st Tdap-IPV [¶] (n=351)	54.4	52.1	46.4	n/a	n/a	n/a	14.5		
2 nd Tdap-IPV (n=351)	73.2	48.1	40.2 [§]	n/a	n/a	n/a	4.0	0	

* Deemed to be unrelated to vaccination

[¶] 1st Tdap at age 4-8 years (replaced 5th DTaP dose)

§ 2 large injection site swellings reported (0.6%)

Summary of adverse events: 2nd Tdap 10 years after previous dose

	Injection site (%)							
	Pain	Erythema	Swelling	Myalgia	Headache	Malaise	Fever	Serious AEs
Boostrix - W	ithin 4 da	ys of vaccination	on (Booy 2010)					
1 st Tdap (n=164)	67.1	34.8	16.5	n/a	12.8	11.0*	9.1	
Repeat (n=164)	69.5	35.4	32.3 [¶]	n/a	9.1	11.6*	2.4	0
Adacel - Wit	hin 7 days	of vaccination	n (Halperin 201	2)				
Naïve† (n=407)	84.4	29.7	23.3	53.5	37.6	29.0		
Repeat (n=361)	87.8	23.1	20.5	60.1	40.6	29.4		4§
* Reported fatigue								

¹ 3 large injection site swellings

⁺ Control group received 1st dose of Tdap

§ Considered unrelated to vaccination

Tdap revaccination Safety: WG conclusions

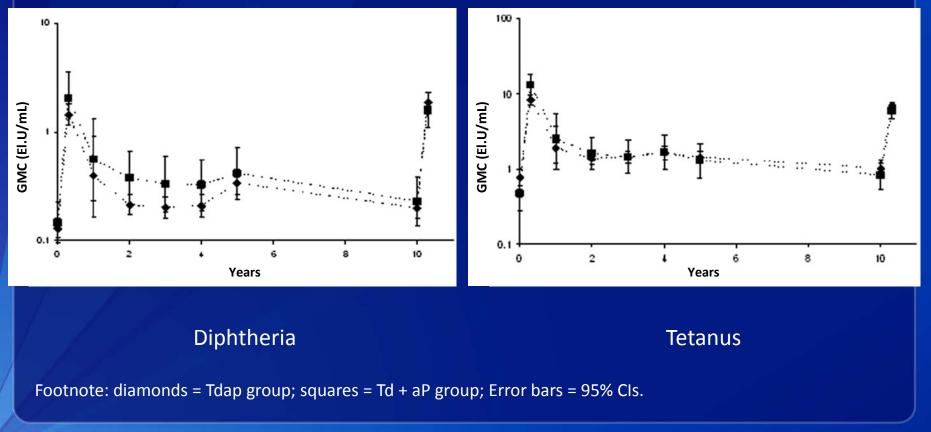
Local reactions common, systemic reactions less common

- Mild to moderate and self-limited
- Frequency generally comparable to first Tdap
- Serious AEs rare, not related to vaccine
- Data from US trials would not differ significantly from data collected from other countries
- Observational studies support Tdap with intervals <5 years</p>

Tdap revaccination 5- and 10-years after first Tdap

Tetanus and diphtheria GMC concentration before and after 1st and 2nd dose of Tdap (Adacel) after 5-year interval

Table 2


Geometric mean concentrations and fold antibody rise before and after a first dose and second dose of Tdap after a 5-year interval.

		Previous studies		Current study		
		Prevaccination	Postvaccination	Prevaccination	Postvaccination	
Tetanus (IU/mL)	N GMC (95% CI) Fold-rise (95% CI)	451 0.643 (0.566; 0.731)	451 9.59 (8.67; 10.6) 14.9 (13.2; 16.7)	445 1.41 (1.27; 1.56)	451 9.62 (9.06; 10.2) 6.89 (6.13; 7.75)	
Diphtheria (IU/mL) ^a	N GMC (95% CI) Fold-rise (95% CI)	64 0.415 (0.307; 0.560)	64 9.39 (7.85; 11.2) 22.6 (16.9; 30.2)	64 4.45 (2.77; 7.15)	64 8.70 (6.59; 11.5) 1.96 (1.48; 2.59)	
Diphtheria (IU/mL) ^b	N GMC (95% CI) Fold-rise (95% CI)	379 0.089 (0.073; 0.109)	379 1.57 (1.27; 1.94) 16.2 (14.1; 18.8)	379 0.133 (0.110; 0.162)	379 2.17 (1.84; 2.56) 15.4 (13.5; 17.5)	

^a Diphtheria with intervening quadrivalent meningococcal vaccine.

^b Diphtheria without intervening quadrivalent meningococcal vaccine.

Diphtheria and Tetanus: Antibody GMCs over 10 years before and after 1st Tdap and 1month after repeat Tdap booster (Boostrix) Adults (n=164)

Booy 2010

Response to Tdap booster dose Tetanus and Diphtheria

- Responses to tetanus and diphtheria robust at 5 and 10 years
- Very high levels of seroprotection

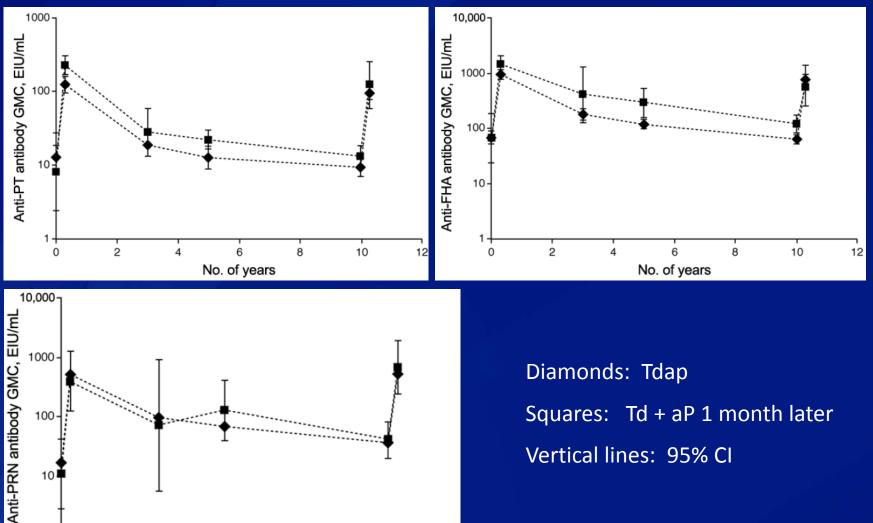

Pertussis GMC concentration before and after 1st and 2nd dose of Tdap (Adacel) after 5-year interval

Table 2

Geometric mean concentrations and fold antibody rise before and after a first dose and second dose of Tdap after a 5-year interval.

		Previous studies		Current study		
		Prevaccination	Postvaccination	Prevaccination	Postvaccination	
PT (EU/mL)	N GMC (95% CI) Fold-rise (95% CI)	451 12.7 (11.3; 14.3)	449 243 (220; 270) 16.0 (14.3; 17.8)	381 21.3 (19.4; 23.5)	425 104(97.0; 112) 4.91 (4.59; 5.24)	
FHA (EU/mL)	N GMC (95% CI) Fold-rise (95% CI)	451 17.4 (15.6; 19.3)	450 241(223;261) 13.4(12.1;14.8)	450 34.6 (31.9; 37.5)	450 201 (189; 215) 5.81 (5.41; 6.24)	
PRN (EU/mL)	N GMC (95% CI) Fold-rise (95% CI)	451 7.58 (6.75; 8.52)	450 271(237; 309) 30.5 (27.3; 34.2)	451 37.3 (32.7; 42.6)	451 218(201;236) 5.60(5.03;6.24)	
Fimbriae (EU/mL)	N GMC (95% CI) Fold-rise (95% CI)	451 32.7 (29.2; 36.6)	450 1337 (1169; 1529) 32.4 (28.1; 37.2)	445 165(145;187)	450 749(697;806) 4.50(3.99;5.09)	

Pertussis: GMCs up to 10 years after 1st Tdap and 2nd Tdap after 10-year interval (Boostrix) Young adults (n=75)

No. of years

Mertsola 2010.

Response to Tdap booster dose Pertussis

Robust responses to all pertussis antibodies

2nd Tdap antibody response similar to 1st Tdap

Antibody levels similar in cohorts boosted after 5 or 10 years¹

WG Conclusions on Tdap Revaccination Interval

Clinical trials support safety of 5- and 10-year intervals

- Shorter intervals supported by observational data
- Immunogenic with intervals of 5- and 10-years
 - 10-year interval probably sufficient for tetanus and diphtheria
- Overall effectiveness and waning of protection will likely influence the impact of revaccination strategies

Data available for second dose, not subsequent doses
Considering "off-label" recommendation

Tdap revaccination

FRAMEWORK FOR DECISION AND COST-EFFECTIVENESS ANALYSIS

Rationale and Objective

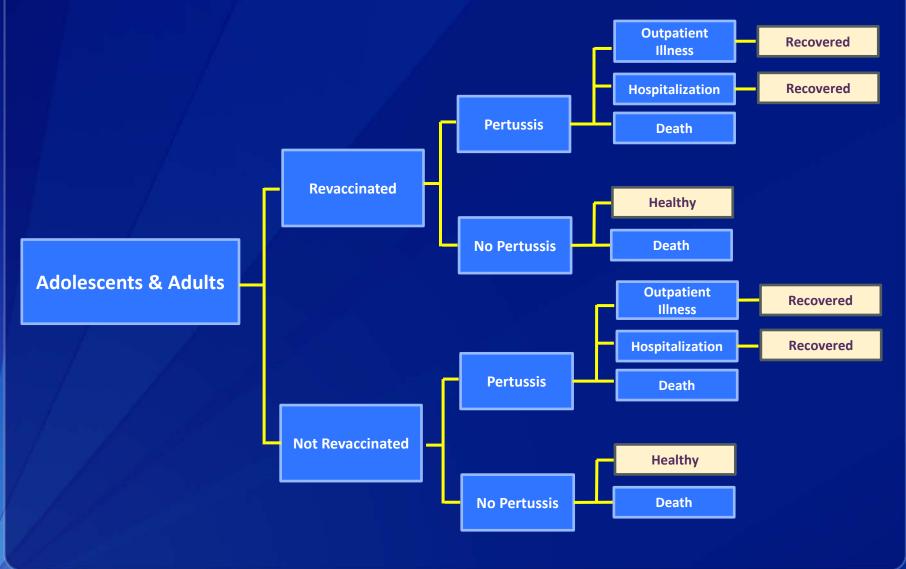
Rationale for decision and cost effectiveness analysis

- Incidence of pertussis in adolescents and adults increasing
- Program implemented beginning in 2006
- Duration of Tdap vaccine may be short among acellular recipients

Objective

 To evaluate the cost effectiveness and preventable burden of disease by different scenarios of revaccination of Tdap for healthy adolescents and adults

Decision and Cost-effectiveness Model

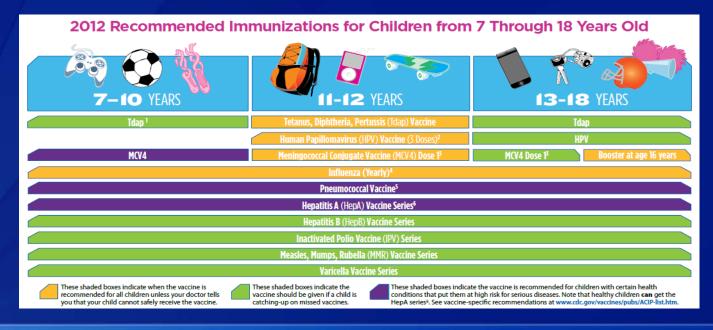

□ Strategy:

- revaccination vs. no revaccination
- Cohort population: 11 year-old birth cohort
- □ Analytic horizon: life expectancy for 11-12 y.o. (68 years)

Outcomes:

- Cases, outpatient visits, hospitalizations, death
- Perspective: health system (direct cost) and societal (indirect costs)
- Quality Adjusted Life Years (QALY's)

Decision Analytic Model

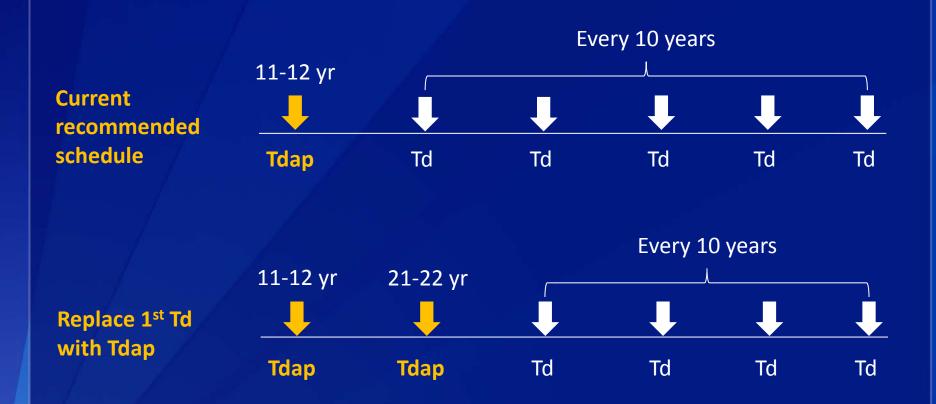


Key Vaccine Parameters of the Model

- Incidence rates by age (or age group)
- Vaccine Effectiveness
- Waning immunity
- Vaccine Coverage
- Revaccination rate
- Infection rate of non vaccinated
- Pertussis patient's probability of visiting outpatient clinic and hospitalization
- **Case fatality rate**
- Natural death rate of each age
- Cost
 - Direct medical cost of cases (inpatient & outpatient)
 - Indirect cost (wage loss and productivity loss)
 - Revaccination program cost

Considerations for Tdap revaccination schedule: Current recommendation/practices

- Tdap for every pregnancy
- Decennial Td
- Adolescent platform
 - 11-12 years
 - 16 years (MCV4 booster)



Source: http://www.cdc.gov/vaccines/who/teens/downloads/parent-version-schedule-7-18yrs.pdf

Revaccination Scenario #1

Revaccination Scenario #2

Revaccination Scenario #3

Next steps for WG

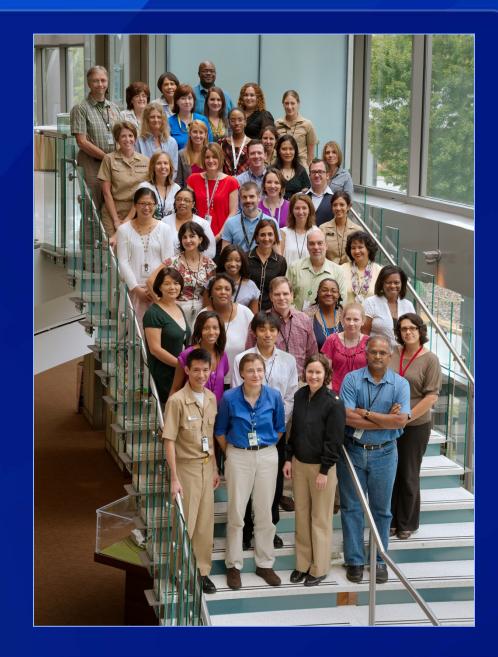
To be completed for June 2013

- Tdap vaccine effectiveness and duration studies
- Decision and cost effectiveness analysis
- GRADE (question yet to be determined)

Consideration of "at-risk" populations

- Healthcare workers
- Cocooning and post-partum
- Under-vaccinated children aged 7-10 years

Final thoughts...


- Pertussis vaccines protect
- Resurgence of pertussis expected to continue
- Goal is to prevent infant morbidity and mortality, but also limit burden of pertussis
 - High coverage in adolescents can be achieved
 - Attaining high coverage among adults remains a challenge
- No evidence yet of a strong "herd effect"

Maximizing the Vaccination Program

Expanding the Evidence for New Vaccines

THANK YOU

Discussion Questions

Are we considering appropriate strategies?
Should we consider additional strategies?
What additional data would you like to see?